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Abstract

The main interest of this study is in the fracture initiation in graded coatings under sliding contact loading. The
structural component under consideration is a metallic substrate bonded to a metal/ceramic coating with continuously
varying thermo-mechanical properties. The coating is 100% ceramic at the free surface and 100% metal at the interface.
It is assumed that the thickness variation of the shear modulus of the coating is exponential and the Poisson’s ratio is
constant. The loading is provided by a sliding rigid stamp subjected to constant normal and tangential forces and the
underlying elasticity problem is two-dimensional. On the contact area, it is also assumed that the conditions of Cou-
lomb friction prevail. The objective of the study is to obtain a series of analytical benchmark solutions for examining
the influence of such factors as material inhomogeneity constants, the coefficient of friction and various length
parameters on the critical stresses that may have a bearing on the fatigue and fracture of the coating.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Graded materials or functionally graded materials (FGMs) are multiphase composites with continuously
varying volume fractions and, consequently, thermo-mechanical properties. Many of the present and po-
tential applications of FGMs involve contact problems which are mostly load transfer problems in the
presence of friction. Such structural components as bearings, gears, machine tools, cams and abradable
seals in gas turbines may be mentioned as some examples (Trumble et al., 2000; Pan et al., 2003; Miyamoto
et al., 1999). An important problem in the design of load transfer components is the preparation of surfaces
to reduce the likelihood of cracking. Thus, the optimum design of these components requires the necessary
material toughness and wear resistance near and at the surfaces. A simple solution to the problem may be
coating the essentially metallic substrate by a ceramic layer. The shortcomings of this approach appear to
be poor bonding strength, relatively high residual stresses and the brittleness of the surface layer. Replacing
the ceramic coating by a metal/ceramic FGM layer seems to provide a way toward eliminating these
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Fig. 1. Geometry of the contact problem.

shortcomings. The underlying somewhat simplified mechanics problem is then the following: A relatively
thick homogeneous metallic substrate is coated by a metal/ceramic FGM layer in such a way that the layer
is 100% ceramic at the surface and 100% metal at the interface (Fig. 1). The Poisson’s ratio is constant
throughout the medium and the shear modulus of the FGM coating is given by u (y) = p, exp(yy) where pg
is the shear modulus of the substrate and y is the material inhomogeneity constant. The composite medium
is loaded by a sliding rigid stamp subjected to a normal force P and a tangential force O = nP, where n is the
coefficient of friction. The primary objective of the study is the determination of the stress components
O, Oy, and oy, on the surface of the coating in order to examine the question of crack initiation (see, for
example Lawn (1993) for surface cracking of glass under sliding spherical steel indenter and Suresh et al.
(1999) for similar results for glass and polycrystalline alumina).

The related fundamental contact problem for the homogeneous materials is the Cattaneo’s problem (see
Hills et al. (1993) for the main results in contacting shallow cylinders and Ciavarella (1998a,b) for some
recent results on the slip-stick problem). In this problem the normal force P is fixed and the tangential force
0 increased monotonically from zero to #P. The problem is one of partial slip or slip-stick for 0 < Q < nP
and sliding contact for Q = yP.

Aside from the finite coating thickness an important feature of the contact problem considered in this
study is the material inhomogeneity. The contact problem for inhomogeneous materials has only a limited
number of solutions mostly by Suresh and coworkers. Suresh et al. (1997) studied the axisymmetric
indentation problem for a graded medium with Young’s modulus E(z) = Ey exp(oz) and spatially constant
Poisson’s ratio. It was assumed that the profile of the indenter is a parabola and the contact is frictionless.
The results include the finite element solution, description of the experiments giving the load vs. indenter
displacement and the comparison of the theory and experiments. The theoretical (by finite element tech-
nique) and experimental investigation of a graded medium loaded by a sliding spherical indenter and the
resulting surface cracking was carried out by Suresh et al. (1999). The “metal” phase of the medium was
polycrystalline alumina and the “ceramic” phase was alumina slicate glass. The depth variation of the
modulus of the medium was assumed to be a power law of the form E(z) = E; + E¢z* where E; is the surface
value, 0 < k < 1 and the constant Ej is selected in such a way that the units are consistent.

The axisymmetric graded half space problem for a concentrated load and for flat, spherical and conical
indenters were considered by Giannakopoulos and Suresh (1997a,b). In these studies, too it was assumed
that the Poisson’s ratio is constant and the Young’s modulus varies in depth direction either as a simple
power law (E(z) = Eoz*, 0 <k < 1) or exponentially (E(z) = Epe*) and the contact is frictionless. Dag and
Erdogan (2002) considered the coupled plane strain problem of crack/contact mechanics for an inhomo-
geneous medium with spatially constant Poisson’s ratio and exponentially varying Young’s modulus
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E(x) = Esexp(yx), Es being the surface value and x the depth coordinate. In the sliding contact problem
studied it was shown that the trailing end of the stamp has higher stress concentration (for the case of
smooth contact) or higher stress singularity (for the case of flat stamps), the stress singularity depends on
the coefficient of friction and the surface value of the Poisson’s ratio and is independent of the inhomo-
geneity constant y and the Young’s modulus as long as E is non zero. It should be emphasized that for
small values of x, since any variation of E(x) can locally be represented by Eyexp(yx), for the same coef-
ficient of friction and the same Poisson’s ratio, the stress singularities are the same for a homogeneous and
an inhomogeneous sliding contact problems.

An approximate solution of the plane strain sliding contact problem for a rigid cylindrical stamp acting
on a graded medium is given by Giannakopoulos and Pallot (2000). The Young’s modulus of the (semi-
infinite) graded medium is assumed to be E(y) = Egy¥, 0 <k <1 (see, also Booker et al., 1985). Since it is
rather difficult to think of materials with vanishing stiffness on the surface, at best results are approximate.
As indicated in the forgoing discussion, with a nonvanishing Young’s modulus on the surface the stress
singularity for a flat stamp is independent of material inhomogeneity (in this case k) and is dependent only
on the surface value of the Poisson’s ratio and the coefficient of friction. In this sense the heavy dependence
of the singularity on the inhomogeneity constant £ as shown in Eq. (25) does not seem to be physically
acceptable. The sliding contact problem for a graded medium was also considered by Guler and Erdogan
(1998). In the plane strain problem studied it was assumed that the Young’s modulus varies exponentially in
depth direction and the rigid stamp may be flat, parabolic, semi circular or wedge-shaped. The sliding
contact problem for a graded coating bonded to a homogeneous substrate is considered in this study.

2. The formulation of FGM-coated elastic half plane

Consider the plane elasticity problem show in Fig. 2. Medium 2 is a homogeneous substrate and medium
1 is the graded coating with a thickness 4. The shear moduli of the coating and substrate are given by u(y)
and p, respectively. u, is constant and u(y) is approximated by

py) = wme”, —h<y<Qo, (1)

where 7 is a constant characterizing the material inhomogeneity, g, is the value of p(y) at the surface and
and u, are related by

= e, 2)
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Fig. 2. Geometry of the problem for an FGM-coated homogeneous half plane.
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Defining

r,=* (3)
Hy

for future reference, from (2) and (3) y may be expressed as
1
y:—zlogfg. (4)

In the composite medium —oo < y < 0 the spatial variation of the Poisson’s ratio is assumed to be neg-
ligible. Thus, we have v, = v;(y) = v = constant.

For the plane contact problem under consideration the Hooke’s law in the region —4 < y < 0 can be
written as

rax) = 22 [k D G+ 30 FE ], (52)
antr) = 25 [ -0 Gk e 0G| (5b)

6141 601 :| (SC)

1n5) = 10| T+

where k = 3 — 4v for plane strain and x = (3 — v)/(1 4 v) for the generalized plane stress conditions. For
medium 2, —oo < y < —h, u, replaces u(y) in (5).
Substituting (5) into the equilibrium equations we obtain

6201 6201 62u1 6u1 al)l

halhl) =49 A St S 1)L = _
(k+1) A +(k=1) o + axay+y(3 K) o +y(k+1) o 0, h<y<O0, (6a)
R i A T i O SR IR S L B A (6b)
* a2 0y? Ox0y P oy P ox F=

62u2 62u2 621)2

621)2 621)2 62u2
(K+1)6—)/2+(K_1)¥+26x6y_0’ —00 <y < —h. (7b)

By using the Fourier transforms, the displacement components, u;(x, ), v;(x, y), #»(x,y) and v,(x,y) may be
expressed as

1 [ A 1 [ i

ne) =5 [ Alnerdn a5 [ Gl (5a.b)
1 [ A 1 [~ io

i) =5 [ Byt et =5 [ Geed (9a,b)

8
Fl((xay) = ZA5j(O()Cn/y, Gl(a’y) = ZAéj((x)enjya (103,1’))
=5
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Fy(2,y) = [Ays(a) + drs(2)y]e™ + [Ar () + Ars(@)yle™™, (11a)
Ga (o, y) = [Ass(2) + Ase(0)y]el™ + [As7 (o) + Ass(2)y]e™ ™, (11b)
where n; (j =5, ..., 8) satisfies the following characteristic equation

(njz.—oc2+ynj)2+52|oc2y2:0, (12)

ns =3 (= 7+ VET A T (132)
no=3(~ 7~ VETAE TTD)), (13b)
m =5 (= 7+ VETAE ), (13¢)
m=3(—7— V7 AGE i) (13d)
& = i;’f (13¢)

The functions As;(a), Agj(a), A7;(x) and Ag;(a) (j =5, ..., 8) are unknown and are not independent. The
relationship between them can be written as

Azs(a) = i{%fl%(a) + §A86(O‘)} , Az(0) = i%Ass(O‘), (14a,b)
Apr (o) = i[ - %'Am(a) + ZASS(OC):| ;o Ags(o) = _i%ASS(O‘)v (15a,b)
As(2) = ay(@)Ag (3), J= 5.6, Asy(a) = —ay 2(0)des(@), j=T.8, (16a,b)

(k + l)(nj2 + ynj) — (k= 1)o?
(o) = — : . j=5,....8 17
a(%) ia[2n; + (3 — x)] / (17)
In the formulation given above, there are a total of eight unknowns, 4; and 4s; (j=35,...,8). The
boundedness of a5, and s, as [x* +)*| — oo requires that Ag; and Agg be zero. The remaining six un-
knowns are obtained from the following continuity and boundary conditions on the surface of the coating

uy (x, —h) = up(x, —h), v1(x, —h) = va(x, —h), (18a,b)
Gl)’y(xa _h) = UZyy(x’ _h)v O-lxy(xv _h) = alry(xv —h), (198., b)
o1,(x,0) = a(x), 01y (¥, 0) = 7(x). (20a,b)

Of the six unknowns four may be eliminated by using four homogeneous conditions (18) and (19). The
remaining two unknowns (4gs, A¢7) may then be expressed by using (20) as follows:

[(1c = DP(o)7s + F6Q()], (21a)
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1

Aer = T [reQ(o) — (1 = 1)P(2)rs], (21b)

where 45, r¢ and rg are known functions and P and Q are given by (see Guler (2001) for details)

P(a) = /jc a(t)e ™ dt, O(a) = /jc t(f)e ™ dt. (22a,b)

o0 o0

3. Integral equation for the stamp problem

The formulation given in the previous section describes the solution of the ordinary stress boundary
value problem shown in Fig. 2. On the other hand the contact problems shown in Figs. 1 and 3 for a rigid
stamp are mixed boundary value problems in which the tractions ¢ and 7 are known to be zero outside the
contact region and within the contact region —a < x < b the displacement components are known through
the given stamp profile. By using the derivation described in Section 2 the displacements on the surface may
be expressed as

b b
lim 27y, gvl(x,y) = lim / Ki(x,y,t)o(¢)dt + lim / K (x,p,0)7(2)dt, (23a)
y—0 Ox =0 J =0,

o b b
111%2nul a_ul(xvy) = 111’18 / KZl(xvyv t)T(t) dl+lll’1’(} / K22(xvya t)o-(t) dt, (23b)
y— x y=0 J_, =0 J_,

where the kernels K;; are known functions (see Guler (2001) for details) and to dictate the nature of sin-
gularity of the resulting integral equations (in this case Cauchy singularities and delta functions) (23) is
expressed in terms of displacement derivatives rather than displacements. We now observe that the kernels
K;; are of the form

Kij(x,3,1) = / hy(y,e)e ™ do,  (i=1,2; j=1,2). (24)

Thus examining the asymptotic behavior of #; for |«| — oo, the leading terms in (24) may be obtained as
(see Guler (2001) for details)

Fig. 3. Geometry of the flat stamp problem.
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B R B (1] lyoin(r—) 4., K+ 1 2(t—x)
Klloo(-x7y7t) _KZIOO(-x7y7t) - 4 ‘/7OO o €e dOC— 4 (t—x)z—yZ, J’<0; (25)
k—1 [~ - Kk—1 2y
- _ - _ loy o —ioe(t=x) 40 — —
KlZoo(x7ya t) K2200(x7y7 t) 4 [m ere do 4 (t . )C)Z +y2 , y< 0. (26)
By using the limits
. t— 1 .
lim al lim ——2 = —78(t — x) (27a,b)

O (xR ()
from (23) it follows that

/71 1 [

—wt(x) + - / {: - k”(t,x)] o(t)de — p / (ki (t,x)dt = f(x), —a<x<b, (28a)
11 [

wo(x) +— / PR kor (2,x) | t(2)de — - / o(kan(t,x)dt = g(x), —a<x<b, (28Db)
T J_a - —a

where the kernels k; are known bounded functions and
., 0 ., 0 A k=1
.f(x)_}“éxvl(xvo), g(x)_iaxul(xvo)v /L_K—Fl’ w_K+1 (29a_d)

The expressions (28) constitute a pair of integral equations for the unknown contact stresses ¢ and t,
provided the stamp profile, that is, u;(x,0) and v;(x,0), —a <x < b and the contact conditions (for
example, perfect adhesion) are prescribed. In this study it is assumed that the stamp moves relative to the
substrate, the coefficient of friction # in the contact region is constant and the friction is one of Coulomb
type. Thus in the contact region we have

O1(x,0) = 0(x) = —p(x), —a<x<b, (30a)
o1y(x,0) = 7(x) = —np(x), —a <x<b, (30b)
p(x), —a < x < b, is the only unknown function and may be obtained from
I 1
wnp(x)+;/ {—:+k11(t,x)+11k12(t,x) p(t)dt =f(x), —a<x<b. (31)

For a complete solution of the problem some additional conditions are needed. First, the contact
pressure p(x) must satisfy

b
/ p()dt = P, (32)
where P is the resultant compressive force. The amplitude of the applied load may be given in terms of
either P or stamp displacement v, parallel to the y-axis. Secondly, at the end points —a and/or b if the
contact is smooth (e.g. Fig. 1), then the solution p(x) must also satisfy certain consistency conditions
(Guler, 2001).

Detailed examination of the kernels in (31) shows that, in addition to the singular terms 1/(¢ — x) and
o(t — x), the kernels k;; and k;, have the following ill-behaved components which, for accuracy, needs to be
treated separately in the numerical analysis.
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K+5 ml|t—x|

Fuoeo ) = =77 (33a)
_ 2(t — x)
Kiaoo (x,2) = 7 log‘ bria | (33b)
By defining the following normalized quantities
b+a b—a b+a b—a
x=— r+ 7 t= 7 s+ 7 —a<(x,t)<b, —-1<(rs) <], (34)
p(x) =29(r), [flx)=AF(r), on=A4, (35)
the integral equation (31) may be expressed in the following form
I 1!
Ad(r) — 1 Mds+—/ k(r,s)(s)ds = F(r), —1<r<]1, (36)
nJ48—r T J_
where the kernel &(r,s) is given by
b+a
k(r,s) = [k“(x, f) + 1’]k12(x, l)} 3 . (37)

4. On the solution of integral equations

For an accurate and efficient solution of the integral equation the corresponding weight function w(s)
needs to be determined. By defining the complex potential

oz) = L) g (38)

2m ) s —z

and using the complex function theory (Muskhelishvili, 1953), from the dominant part of the integral
equation

L[t g(s)
wng(r) T B P ds = G(r), (39)
the weight function of ¢(s) may be determined as
wis)=(1—s)"(1+s), —1<s<l, (40)

0 0 1
o=—+Ny, pf=-——+M, 0=arctan—, (41)
T T wn

where Ny and M, are arbitrary (positive, zero or negative) integers and are determined from the physics of

the problem. In (39) G(r) represents all the bounded terms in (36).
After determining w(s) the solution of (36) may be expressed as

o(s) = chw(s)P,f“’ﬁ) (s), —l<s<l, (42)

where ¢, are unknown coefficients and P*#)(s) are Jacobi polynomials associated with the weight function
w(s). By substituting (42) into (36) it may be shown that
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,,ZO_C;C" Lizn:ocp"('zéﬂ)(r) +Ki(r)| =F(r), -1<r<l, (43)
1 1

K,(r) = - / k(r,s)P™P (s)w(s)ds, xy = —(o+ B), (@)
-1

where k; is the index of the integral equation (Muskhelishvili, 1953).

The functional equation (43) can be reduced to a system of algebraic equations in ¢, through a suitable
collocation technique (Erdogan and Gupta, 1972). In the numerical solution of (43), higher accuracy is
obtained when the density of the collocation points is increased near the ends by choosing the colloca-
tion points (r;, i =0,1,...,N) as the roots of the Jacobi polynomials depending on the index of the
problem.

5. The in-plane stress o1, on the surface

Once the contact stresses o1,,(x,0) = o(x) and ay,,(x, 0) = 7(x) are obtained, the in-plane stress oy, (x, 0)
on the surface of the FGM coating may be evaluated. By using the Hooke’s law

e Ou ov
1 (X, y) = 51_ 1 {(H 1)671+ 3- K)ayl} (45)
we” Ou ov
ox) =1 3= 0 ek S, (46)
| Oup v
ley(x7y) = :ule/' |:a_yl+a_x1:| (47)

and referring to (28) and (29), it may be shown that

01x¥(x7 O) = O-Txx(x7 0) + O-Lllxx(x7 0)7 (48)
2 b
Ph(3,0) = o) — > / o (2, %)a(£) i, (492)
a? (x,0) _2 /b L—k (¢,x)|(¢)de (49b)
Lox \P - )., f—x 21\, .
6. Examples

6.1. Flat stamp

Consider the contact problem for an FGM layer bonded to a homogeneous substrate shown in Fig. 3
where the stamp profile is given by

v1(x,0) = —vy = constant, aivl(x7 0) =0. (50)
X
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Referring to Fig. 3, (29) and (35), the integral equation (36) and the equilibrium equation (32) become

A¢(r)+%/_i [S%rJrk(r,s)}qﬁ(s)dsO, (51)

! P
/71 o(s)ds = e (52)
The function p(x) has integrable singularities at x = a and x = —a. Thus, from the physics of the problem

we must require that both « and f be negative. They may then be obtained by letting Ny = —1 and M, =0
as follows:

0 0

n>0: o=—-14+—-, pf=——,

i i

n=0: o=-0.75, =—-0.5,
0 0.5 0.5 53

0 0

n<0: ao=—-——, f=—-14—,

i i

where

K+ 1 b1

0— arctan m s 0 < 0 <§ (54)

Assuming a solution of the form (42), using the properties of Jacobi Polynomials and truncating the
series at NV, Eq. (43) becomes

N
L)
0| =— P7 K, =0, -1 1. 55
>0 s 0K <r< (53)

By using the collocation technique (55) gives N equations for N + 1 unknown constants cy,...,cy.
The additional equation for a unique solution is provided by the equilibrium condition (52) which
becomes

N 1
s / w(s)P*P (s)ds = 1, (56)
n=0 -1
where
A
= ?ac,, (57)

Using the following orthogonality condition

: o 0? n '7 .
/1 PP ()P (6)w(o)dr = { I - ij j=012,..., (58)
— J ) )
where
! 24 (o + DT+ 1)
9eh / _
i 3 w(7)dt i B2 : (59)
2 HI(j 1
0b) — Uraet DIG+A+T) (60)

J 2j+oa+B+1)IG+a+p+1)
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we obtain the following NV + 1 equations

N
> GF(r) =0, i=1,...,N, (61a,b)
where
R S )
F(r) = 5 P () + Ko(r): (62)

In (62) r; i =1,...,N) are obtained by letting

Py Gy =0, i=1,...,N. (63)
After determining c,, the contact stresses and the in-plane stress may be obtained as
O‘]_W(X,O) — _M (643.)
oo oo ’
PO _ 2] (64b)
00 00
al)oc(x? 0) _ p(x) 2’7 /a p(t) 2 ¢
o0 o mon).i-x de + o ] [k (2,x) + nky (2,%)]p(2) dt, (64c)
P
=_ 4
() Za, (6 d)
where
X\ * X\ B X
_ _r ~ “plop) (2
p(x) —200(1 a) (1 +a) nZO:cnPn (a)' (65)

Upon solving the problem, the stress intensity factors at the end points x = +a of the flat stamp may be
defined as and evaluated from

p(x) 200 &
=lim ———~— ="~ E *plp) (1
kl( ) xl—IB 2/3(a —X) a* L Culn ( )7 (663)
260 N
ki(—a) = lim ———— “ﬁ 66b
1(—a) = sz(ﬁa Z (66b)

6.2. Triangular stamp

Consider now the stamp problem for the FGM layer bonded to a homogeneous substrate shown in
Fig. 4 where the stamp profile is given by

v1(x,0) =mx+ C, §U1(X, 0) =m, (67)
x
where m is a positive constant.
Defining
b b ,
x=S0HD), =20+ 1), pl) = id(s) (68)



3876 M. A. Guler, F. Erdogan | International Journal of Solids and Structures 41 (2004) 3865-3889

P

Fig. 4. Geometry of the triangular stamp problem.

the integral equation (36) and the equilibrium condition (32) become

ap0 42 [ -] sras = m (69)
[ s0a=2 (70)

Since the triangular stamp has a sharp corner at x = 0, and smooth contact at x = b, from the physics of
the problem it follows that « be positive and § be negative. They can then be found by letting Ny = My =0
in (41) as

0
n<0: oa=1-——, pf=-1+4+—,
n n

where 0 is given by Eq. (41).
Assuming a solution of the form (42) and using the properties of Jacobi Polynomials and truncating the
series at N, Eq. (43) becomes

N
1
Zc:?[ — P () + K, ()| =1, —l<r<l, (72a)
" | sin o
o
Cn - m . (72b)

In this problem, after the application of the load P, one end of the contact length, namely b is unknown.
However, for a given value of the contact length, Eq. (72) provides N + 1 equations for N + 1 unknown
constants (¢, ...,cy) as follows:

N
1
E cf,[. PP+ K (r)| =1, i=1,...,N+1, -1<r<]l, (73)
‘= "[sinmo
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where r; (i =1,...,N + 1) are defined by
—1,p+1 .
Py =0, r(i=1,...,N+1). (74)

The relationship between the applied load P and the contact length, b can be found from the equilibrium
equation (70) which becomes:

2P
000 = — 75
%= Tbm’ (73)

where 0y can be computed from Eq. (59)
2

0= ——, (76)

sin 7o

P 2
_ COQO b. (77)

wm k41

The contact stresses and the in-plane stress in nondimensional form at the surface of the FGM coating can
then be expressed as

O-U’y(xa O) p(x)

_ 7 (78a)
Hym Hym
Oy (x,0 X
1y (%, 0) _ _ﬂp( )’ (78b)
Hym Hym
b b
O 1xx\ X, 0 X 2 t 2
G0 __pl)_ 20 / P g lexa (£, x) + ke (£, %) p(£) dit, (78¢)
ym wpm - mym Jo t—x mm Jo
where
duym (b—x\" & 2x
x) = PP = 1), 79
After determining ¢} the stress intensity factor at x = 0 may be defined as and obtained from
duymb* E
k(0) = limx*p(x) = ——— Y c:P*F(-1). 80
1( ) 0 p( ) K+ 1 ; n'n ( ) ( )
Table 1
Stress intensity factors for flat stamp a/h = 0.1, I's = p, /1, (Fig. 3)
n=20.0 n=0.1 n=20.3 n=20.5
o= —0.5, o= —0.5091, f = —0.4909 o= —0.5272, f = —0.4728 o= —0.5452, f = —0.4548
B=-05
I, ki (a) ki (—a) ki (a) ki (—a) ki (a) ki(—a) ki (a)
Pab Pa* Pab Pa Pab Pa Paf
8 0.2802 0.2769 0.2833 0.2696 0.2885 0.2615 0.2926
2 0.3038 0.3025 0.3048 0.2991 0.3060 0.2949 0.3062
1 0.3183 0.3182 0.3182 0.3171 0.3171 0.3151 0.3151
12 0.3355 0.3366 0.3341 0.3382 0.3305 0.3386 0.3261

1/8 0.3813 0.3855 0.3768 0.3933 0.3673 0.3999 0.3572
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7. Results and discussion
Tables 1 and 2 show some examples for the stress intensity factors obtained for a flat stamp (Fig. 3) by

assuming that a/h = 0.1,0.5; 1 = 0,0.1,0.3,0.5 and v = 0.3. In these examples the variable is assumed to be
the stiffness ratio I's = p,/u; (Fig. 3). The tables also give the powers of stress singularity, f and o,

respectively at the leading (x = —a) and the trailing (x = a) ends of the stamp corresponding to v = 0.3 and
Table 2
Stress intensity factors for flat stamp a/h = 0.5, I's = p,/p, (Fig. 3)
n=20.0 n=0.1 n=0.3 n=0.5
o= —-0.5, o= —0.5091, f = —0.4909 o= —0.5272, p = —0.4728 o = —0.5452, f = —0.4548
p=-05
I, ky(a) ki (—a) k(@) ky(—a) ki (a) ki (—a) ky(a)
Pa# Pa* Pa# Pa* Pa? Pa* Pa#
8 0.2086 0.1973 0.2199 0.1754 0.2422 0.1549 0.2635
2 0.2700 0.2657 0.2740 0.2565 0.2814 0.2467 0.2876
1 0.3183 0.3182 0.3182 0.3171 0.3171 0.3151 0.3151
172 0.3848 0.3895 0.3800 0.3979 0.3696 0.4053 0.3587
1/8 0.6011 0.6178 0.5844 0.6510 0.5511 0.6834 0.5185
Table 3
Stress intensity factors for the triangular stamp b/h = 0.2, I's = u,/u, (Fig. 4)
n=20.0 n=0.1 n=20.3 n=0.5
o=40.5 =-0.5 o = 40.4909, o = 40.4728, o = 40.4548,
= —0.4909 p=-0.4728 f = —0.4548
I k1(0) k1 (0) k1(0) k1(0)
uymb* wymb* wymb* 1y mb*
8 1.6247 1.6430 1.6751 1.7005
2 1.4976 1.5041 1.5128 1.5160
1 1.4286 1.4280 1.4234 1.4142
172 1.3550 1.3467 1.3279 1.3063
1/8 1.1912 1.1677 1.1224 1.0789
Table 4
Stress intensity factors for the triangular stamp b/h = 0.5, I's = u, /i, (Fig. 4)
n=0.0 n=0.1 n=20.3 n=0.5
o=40.5 =-0.5 o = 40.4909, o = +0.4728, o = +0.4548,
B = —0.4909 B =—04728 B =—0.4548
I k1 (0) k1 (0) k1(0) k1(0)
1, mb* 1, mb* u;mb* 1, mb*
8 2.1922 2.2358 2.3188 2.3951
2 1.6876 1.6976 1.7132 1.7228
1 1.4286 1.4280 1.4234 1.4142
12 1.1794 1.1736 1.1593 1.1418

1/8 0.7522 0.7470 0.7347 0.7203
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Fig. 5. Stress distribution on the surface of the FGM coating loaded by a flat stamp for various values of the stiffness ratio, I's = u, /1,
a/h=0.51n=0.0.
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Fig. 7. Stress distribution on the surface of the FGM coating for various values of the stiffness ratio, I'; = u,/u;, a/h = 0.5, n = 0.3.



3880 M. A. Guler, F. Erdogan | International Journal of Solids and Structures 41 (2004) 3865-3889

0 2

Fig. 9. Stress distribution on the surface of the FGM coating for various values of the coefficient of friction n, I's = u,/1; = 8,
a/h=0.1,n=0.5.

various values of #. It should be strongly emphasized that in contact problems « and f are independent of
the material inhomogeneity parameter (in this case, y) and depend only on the coefficient of friction # and
the value of the Poisson’s ratio v on the surface y = 0. The table also shows that the singularity at the
trailing end of the stamp is stronger than that at the leading end, i.e., |«| > |f]. From the tables it may be
observed that for stiffer substrates, that is for u, > y, the stress intensity factors are smaller than that for
U, < ;. Tables 3 and 4 show the stress intensity factors and the singularities « and f for a triangular stamp.
These tables, too, show greater “‘stress concentration” at the trailing end relative to the corresponding
frictionless stamp.

By examining stress singularities o and f (for example, for the flat stamp) given by (53a) and (54), it may
be seen that for a fixed value of «, as 5 approaches zero, 0 — n/2, o — —1/2, and f — —1/2, giving the
known square-root singularity for the frictionless sliding stamp. Similarly, as # becomes very large, 6 — 0,
o — —1, and f — 0. As a consequence the singularity at the trailing end (x = a) of the flat stamp becomes
stronger and that at the leading end (x = —a) becomes weaker than the corresponding singularities for the
frictionless stamp.
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Fig. 10. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,
I's=uw/u, b/h=02,1n=0, P*=P/(umh).

Stress distributions perhaps of greatest practical interest are the contact stress g, (x,0) (with
04(x,0) = 50,,(x,0)) and the in-plane stress g..(x,0). Any other stress or displacement component may be
determined by using the appropriate Green’s functions obtained from Fig. 1 and the density functions p(x)
and np(x). Figs. 5-9 show some flat stamp results for the stress components on the surface of the FGM
coating for various values of the stiffness ratio I's = p,/p, and fixed values of a/# and 5. For reference Fig.
5 shows an example for the frictionless flat stamp. Note that the stress distribution is symmetric with respect
to the x = 0 plane, for |x| < a, 6..(x,0) is compressive, for |x| > a, g,, = 0 for I'; = 1 (homogeneous half
plane), g,, > 0 for I'; > 1 and g,, < 0 for I'; < 1. For |x| < a all stress components become unbounded as
|x| — a.

Figs. 6-9 show the influence of the stiffness ratio, I'; the length parameter a/k and the coefficient of
friction # on the distribution of g,,(x,0) and o,(x,0). The most important result is that in the presence of
friction a,,(x, 0) become positive and unbounded as x — a + 0. Figs. 10-17 show some sample results for a
triangular stamp. Specifically, the figures show the effect of the stiffness ratio I's on ag,,(x,0), o.(x,0) and
the resultant force P vs the contact length b relationship for certain combination of 5/h and 5. Again, for
reference the frictionless case is shown in Fig. 10. As expected, because of the singularity, g,,(x,0) and
0.(x,0) become unbounded as x — 0. In this problem the length 5 describing the location of the smooth
contact is unknown and is a monotonically increasing, highly nonlinear function of P. The problem is
solved by assuming b, then computing P from the static equilibrium of the stamp. P vs. b given in the figures
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Fig. 11. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,
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is obtained by repeating this process. The slope m of the stamp has no influence on the singularities. Hence,
its influence on the calculated stresses is largely quantitative. One of the more interesting results that may
be observed in the triangular stamp problem is the tensile spike in the distribution of ¢, (x,0) as x — b
which, clearly, has some implications regarding the initiation and subcritical growth of surface cracks
under repeated loading. Another interesting result that may be observed from Figs. 16 and 17 is that fixing
I's and b/h and varying #n seem to have almost no influence on o,,(x,0) but rather significant effect on
04 (x,0).

As pointed out previously, in the sliding contact problem under consideration the weight functions w(x)
and, consequently, the singularities of contact stresses are dependent on the coefficient of friction 5 and the
surface value of the Poisson’s ratio v (or the material parameter i) only, and are independent of all material
constants (such as y, y; and u, (see Egs. (1) and (2)) and length parameters (such as 4, a, b and m) (see Figs.
3 and 4). Also, observing that on physical grounds the surface value of the shear modulus g, must be
nonzero, the leading term in the asymptotic solution of the general sliding contact problem described in Fig.
1 may be obtained by assuming that the coating thickness 4 tends to infinity and, as a result y tends to zero,
n is a known constant and the medium is homogeneous with elastic properties u; and x. The closed form
solutions for the two stamp geometries considered in this study, namely the flat and triangular stamps are
given in Appendix A. The results shown in the Appendix A include the contact stresses a,,(x,0),
0y (x,0) = na,,(x,0), the in-plane stress g,.(x,0), and the stress intensity factors k(+a), or k(0). The
singular behavior of the asymptotic solution given in the Appendix A is thus identical to that of the actual
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Fig. 12. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,
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problems described in Figs. 3 and 4. The difference is in the multiplying factors such as the stress intensity
factors (see Egs. (66a), (66b), (80), (A.6), (A.7) and (A.13) and Tables 1-4).

8. Some concluding remarks

In sliding contact problems for graded materials the weight functions describing the asymptotic behavior
of the contact stresses are dependent, as in the homogeneous materials, on the coefficient of friction and the
surface value of the Poisson’s ratio only, and are independent of all other material constants and length
parameters. Thus, the leading term in the asymptotic solution of the general sliding contact problem for
graded coatings may be obtained from the corresponding homogeneous half plane solution which, for
many simplified stamp geometries, may be evaluated in closed form. Generally at the trailing end of the
contact area the “‘stress concentration’ is higher than that at the leading end. For example, for a flat stamp
loe| > |p], & <0, f <0, oand p being the power of stress singularity at the trailing and the leading end of the
stamp, respectively.

The results indicate that in sliding contact problems for graded coatings the influence of not only the
coefficient of friction(which is expected) but also the material inhomogeneity constant y or the stiffness ratio
I'; on the contact stresses, particularly the stress intensity factors can be quite significant.
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Appendix A

Closed form solution for a rigid flat stamp on a homogeneous half space may be obtained as (Guler,
2001)

%‘(’“0):Zsmm(1_f)“(1+f)ﬂ, (A1)

(o) T a

(12042 +20,(9, ~a<r<a

a

Ore(x,0)  2sinma

nom | Dyw, il > a.
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Fig. 14. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,
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where
(l—g)a(lntﬁ)ﬁ, —00 < x < —a,
s o
Ly(x) = sinmy ) (1 —i)x(l +§)/;cos e, —a<x<a, (A.3)
(=17 (1+%)", a<x< oo,
P
60_2761, (A4)
0 0 K+ 1
OC——1+E, ﬂ——;, H—al‘ctan y](;{—l)‘ (AS)

The stress intensity factors at the ends of the flat stamp can be found from

2
ki(a) = — 222 sin 7, (A.6)
na*
2
ki(—a) = — i; sin 7o (A.7)
na
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Fig. 15. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,
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Closed form solution of the triangular stamp can be obtained as (Guler, 2001)

on(x0) 4 sinmx(b_x> , (A.8)
wym K+ 1 x

b—x * 2;/,
0 (x,0) 74Sinmx ( X )+—L,(x)7 0<x<b,

_ T (A.9)
Hym k+1 | 24
;L,(x), x<0, x>b,
where
—(x_b> 1, x <0,
X
P b—x\"
Li(x) == ( ) cosma—1, 0<x<b, (A.10)
sin 7o X
(x—b) , x> b.
X
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0
—, p=——, 0 =arctan
s T

K+ 1
m‘ (A.11)

The load versus contact length relation may be expressed as

. (A.12)
wum k41

The stress intensity factor at the sharp end of the triangular stamp is found to be

_ dymb” sin 7ar. (A.13)

fa(0) = 22



3888 M. A. Guler, F. Erdogan | International Journal of Solids and Structures 41 (2004) 3865-3889

0
Y »
i .g=np
l ul s Oy
h @\ 0 b oM o
@ <
— iy
uz_ul et
// - | I l
0 0.05 0.1 0.15 0.2
z/h
1 T - 3 ' '
| “‘;’L"::;:‘:——‘:-::
P* 0.4} /;- |
/’./ —
g ---=m=01
/ —-—1=03
iy

0 0.2 0.4 06 0.8 1
b/h

Fig. 17. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the coefficient
of friction n, I's = p,/p; = 1/8, b/h = 0.2, P* = P/(w,mh).

References

Booker, J.R., Balaam, N.P., Davis, E.H., 1985. The behavior of an elastic nonhomogeneous half space. Part I: Line and point loads.
Part II: Circular and strip footings. Int. J. Numer. Anal. Meth. Geomech. 9, 353-381.

Ciavarella, M., 1998a. The generalized Cattaneo partial slip plane contact problem. [—theory. Int. J. Solids Struct. 35 (18), 2349-2362.

Ciavarella, M., 1998b. The generalized Cattaneo partial slip plane contact problem. II—examples. Int. J. Solids Struct. 35 (18), 2363—
2378.

Dag, S., Erdogan, F., 2002. A surface crack in a graded medium loaded by a rigid stamp. Engng. Fract. Mech. 69, 1729-1751.

Erdogan, F., Gupta, G.D., 1972. On the numerical solution of singular integral equations. Quart. Appl. Math. 29, 525-534.

Giannakopoulos, A., Suresh, S., 1997a. Indentation of solids with gradients in elastic properties: Part 1. Point force solution. Int.
J. Solids Struct. 34 (19), 2357-2392.

Giannakopoulos, A., Suresh, S., 1997b. Indentation of solids with gradients in elastic properties: Part II. Axisymetric indenters. Int.
J. Solids Struct. 34 (19), 2393-2428.

Giannakopoulos, A.E., Pallot, P., 2000. Two-dimensional contact analysis of elastic graded materials. J. Mech. Phys. Solids 48, 1597-
1631.

Guler, M.A., 2001. Contact Mechanics of FGM Coatings, Ph.D. Dissertation, Lehigh University.

Guler, M.A., Erdogan, F., 1998. Contact mechanics of FGM coatings. In: Newaz, G.M., Gibson, R.F. (Eds.), Proceedings of 8th
Japan—US Conference on Composite Materials, pp. 397-408.

Hills, D.A., Nowell, D., Sackfield, A., 1993. Mechanics of Elastic Contacts. Butterworth, Heinemann, Oxford.

Lawn, B.R., 1993. Fracture of Brittle Solids, 2nd ed. Cambridge University Press, Cambridge, UK.

Miyamoto, M., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G. (Eds.), 1999. Functionally Graded Materials: Design,
Processing and Applications. Kluwer Academic Publishers, Norwell, MA.

Muskhelishvili, N.L., 1953. Singular Integral Equations. P. Noordhoff, Groningen, The Netherlands.



M. A. Guler, F. Erdogan | International Journal of Solids and Structures 41 (2004) 3865-3889 3889
Pan, W., Gong, J., Zhang, L., Chen, L. (Eds.), 2003. Functionally Graded Materials VII. Trans Tech Publications Ltd., Switzerland.
Suresh, S., Giannakopoulos, A.E., Alcala, J., 1997. Spherical indentation of compositionally graded materials: theory and experiments.

Acta Mater. 45 (4), 1307-1321.
Suresh, S., Olsson, M., Giannakopoulos, A.E., Padture, N.P., Jitcharoen, J., 1999. Engineering the resistance to sliding-contact

damage through controlled gradients in elastic properties at contact surfaces. Acta Mater. 47 (14), 3915-3926.
Trumble, K., Bowman, K., Reimanis, 1., Sampath, S. (Eds.), 2000. Functionally Graded Materials 2000, Ceramic Transactions, vol.
114, The American Ceramic Society, Westerville, Ohio 43081.



	Contact mechanics of graded coatings
	Introduction
	The formulation of FGM-coated elastic half plane
	Integral equation for the stamp problem
	On the solution of integral equations
	The in-plane stress sigma1xx on the surface
	Examples
	Flat stamp
	Triangular stamp

	Results and discussion
	Some concluding remarks
	Acknowledgements
	Appendix A
	References


