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Abstract

The main interest of this study is in the fracture initiation in graded coatings under sliding contact loading. The

structural component under consideration is a metallic substrate bonded to a metal/ceramic coating with continuously

varying thermo-mechanical properties. The coating is 100% ceramic at the free surface and 100% metal at the interface.

It is assumed that the thickness variation of the shear modulus of the coating is exponential and the Poisson’s ratio is

constant. The loading is provided by a sliding rigid stamp subjected to constant normal and tangential forces and the

underlying elasticity problem is two-dimensional. On the contact area, it is also assumed that the conditions of Cou-

lomb friction prevail. The objective of the study is to obtain a series of analytical benchmark solutions for examining

the influence of such factors as material inhomogeneity constants, the coefficient of friction and various length

parameters on the critical stresses that may have a bearing on the fatigue and fracture of the coating.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Graded materials or functionally graded materials (FGMs) are multiphase composites with continuously

varying volume fractions and, consequently, thermo-mechanical properties. Many of the present and po-

tential applications of FGMs involve contact problems which are mostly load transfer problems in the

presence of friction. Such structural components as bearings, gears, machine tools, cams and abradable

seals in gas turbines may be mentioned as some examples (Trumble et al., 2000; Pan et al., 2003; Miyamoto

et al., 1999). An important problem in the design of load transfer components is the preparation of surfaces

to reduce the likelihood of cracking. Thus, the optimum design of these components requires the necessary

material toughness and wear resistance near and at the surfaces. A simple solution to the problem may be
coating the essentially metallic substrate by a ceramic layer. The shortcomings of this approach appear to

be poor bonding strength, relatively high residual stresses and the brittleness of the surface layer. Replacing

the ceramic coating by a metal/ceramic FGM layer seems to provide a way toward eliminating these
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Fig. 1. Geometry of the contact problem.
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shortcomings. The underlying somewhat simplified mechanics problem is then the following: A relatively

thick homogeneous metallic substrate is coated by a metal/ceramic FGM layer in such a way that the layer

is 100% ceramic at the surface and 100% metal at the interface (Fig. 1). The Poisson’s ratio is constant

throughout the medium and the shear modulus of the FGM coating is given by lcðyÞ ¼ ls expðcyÞ where ls

is the shear modulus of the substrate and c is the material inhomogeneity constant. The composite medium
is loaded by a sliding rigid stamp subjected to a normal force P and a tangential force Q ¼ gP , where g is the

coefficient of friction. The primary objective of the study is the determination of the stress components

rxx; ryy , and rxy on the surface of the coating in order to examine the question of crack initiation (see, for

example Lawn (1993) for surface cracking of glass under sliding spherical steel indenter and Suresh et al.

(1999) for similar results for glass and polycrystalline alumina).

The related fundamental contact problem for the homogeneous materials is the Cattaneo’s problem (see

Hills et al. (1993) for the main results in contacting shallow cylinders and Ciavarella (1998a,b) for some

recent results on the slip-stick problem). In this problem the normal force P is fixed and the tangential force
Q increased monotonically from zero to gP . The problem is one of partial slip or slip-stick for 06Q < gP
and sliding contact for Q ¼ gP .

Aside from the finite coating thickness an important feature of the contact problem considered in this

study is the material inhomogeneity. The contact problem for inhomogeneous materials has only a limited

number of solutions mostly by Suresh and coworkers. Suresh et al. (1997) studied the axisymmetric

indentation problem for a graded medium with Young’s modulus EðzÞ ¼ E0 expðazÞ and spatially constant

Poisson’s ratio. It was assumed that the profile of the indenter is a parabola and the contact is frictionless.

The results include the finite element solution, description of the experiments giving the load vs. indenter
displacement and the comparison of the theory and experiments. The theoretical (by finite element tech-

nique) and experimental investigation of a graded medium loaded by a sliding spherical indenter and the

resulting surface cracking was carried out by Suresh et al. (1999). The ‘‘metal’’ phase of the medium was

polycrystalline alumina and the ‘‘ceramic’’ phase was alumina slicate glass. The depth variation of the

modulus of the medium was assumed to be a power law of the form EðzÞ ¼ Es þ E0zk where Es is the surface

value, 0 < k < 1 and the constant E0 is selected in such a way that the units are consistent.

The axisymmetric graded half space problem for a concentrated load and for flat, spherical and conical

indenters were considered by Giannakopoulos and Suresh (1997a,b). In these studies, too it was assumed
that the Poisson’s ratio is constant and the Young’s modulus varies in depth direction either as a simple

power law (EðzÞ ¼ E0zk, 06 k < 1) or exponentially ðEðzÞ ¼ E0e
azÞ and the contact is frictionless. Dag and

Erdogan (2002) considered the coupled plane strain problem of crack/contact mechanics for an inhomo-

geneous medium with spatially constant Poisson’s ratio and exponentially varying Young’s modulus
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EðxÞ ¼ Es expðcxÞ, Es being the surface value and x the depth coordinate. In the sliding contact problem

studied it was shown that the trailing end of the stamp has higher stress concentration (for the case of

smooth contact) or higher stress singularity (for the case of flat stamps), the stress singularity depends on

the coefficient of friction and the surface value of the Poisson’s ratio and is independent of the inhomo-
geneity constant c and the Young’s modulus as long as Es is non zero. It should be emphasized that for

small values of x, since any variation of EðxÞ can locally be represented by E0 expðcxÞ, for the same coef-

ficient of friction and the same Poisson’s ratio, the stress singularities are the same for a homogeneous and

an inhomogeneous sliding contact problems.

An approximate solution of the plane strain sliding contact problem for a rigid cylindrical stamp acting

on a graded medium is given by Giannakopoulos and Pallot (2000). The Young’s modulus of the (semi-

infinite) graded medium is assumed to be EðyÞ ¼ E0yk, 06 k6 1 (see, also Booker et al., 1985). Since it is

rather difficult to think of materials with vanishing stiffness on the surface, at best results are approximate.
As indicated in the forgoing discussion, with a nonvanishing Young’s modulus on the surface the stress

singularity for a flat stamp is independent of material inhomogeneity (in this case k) and is dependent only

on the surface value of the Poisson’s ratio and the coefficient of friction. In this sense the heavy dependence

of the singularity on the inhomogeneity constant k as shown in Eq. (25) does not seem to be physically

acceptable. The sliding contact problem for a graded medium was also considered by Guler and Erdogan

(1998). In the plane strain problem studied it was assumed that the Young’s modulus varies exponentially in

depth direction and the rigid stamp may be flat, parabolic, semi circular or wedge-shaped. The sliding

contact problem for a graded coating bonded to a homogeneous substrate is considered in this study.
2. The formulation of FGM-coated elastic half plane

Consider the plane elasticity problem show in Fig. 2. Medium 2 is a homogeneous substrate and medium

1 is the graded coating with a thickness h. The shear moduli of the coating and substrate are given by lðyÞ
and l2 respectively. l2 is constant and lðyÞ is approximated by
lðyÞ ¼ l1e
cy ; �h < y < 0; ð1Þ
where c is a constant characterizing the material inhomogeneity, l1 is the value of lðyÞ at the surface and l1

and l2 are related by
l2 ¼ l1e
�ch: ð2Þ
Fig. 2. Geometry of the problem for an FGM-coated homogeneous half plane.
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Defining
C3 ¼
l2

l1

ð3Þ
for future reference, from (2) and (3) c may be expressed as
c ¼ � 1

h
logC3: ð4Þ
In the composite medium �1 < y < 0 the spatial variation of the Poisson’s ratio is assumed to be neg-

ligible. Thus, we have m2 ¼ m1ðyÞ ¼ m ¼ constant.

For the plane contact problem under consideration the Hooke’s law in the region �h < y < 0 can be

written as
r1xxðx; yÞ ¼
lðyÞ
j � 1

ðj
�

þ 1Þ ou1
ox

þ ð3� jÞ ov1
oy

�
; ð5aÞ

r1yyðx; yÞ ¼
lðyÞ
j � 1

ð3
�

� jÞ ou1
ox

þ ðj þ 1Þ ov1
oy

�
; ð5bÞ

r1xyðx; yÞ ¼ l1ðyÞ
ou1
oy

�
þ ov1

ox

�
; ð5cÞ
where j ¼ 3� 4m for plane strain and j ¼ ð3� mÞ=ð1þ mÞ for the generalized plane stress conditions. For

medium 2, �1 < y < �h, l2 replaces lðyÞ in (5).
Substituting (5) into the equilibrium equations we obtain
ðj þ 1Þ o
2v1
oy2

þ ðj � 1Þ o
2v1
ox2

þ 2
o2u1
oxoy

þ cð3� jÞ ou1
ox

þ cðj þ 1Þ ov1
oy

¼ 0; �h < y < 0; ð6aÞ

ðj þ 1Þ o
2u1
ox2

þ ðj � 1Þ o
2u1
oy2

þ 2
o2v1
oxoy

þ cðj � 1Þ ou1
oy

þ cðj � 1Þ ov1
ox

¼ 0; �h < y < 0; ð6bÞ

ðj þ 1Þ o
2u2
ox2

þ ðj � 1Þ o
2u2
oy2

þ 2
o2v2
oxoy

¼ 0; �1 < y < �h; ð7aÞ

ðj þ 1Þ o
2v2
oy2

þ ðj � 1Þ o
2v2
ox2

þ 2
o2u2
oxoy

¼ 0; �1 < y < �h: ð7bÞ
By using the Fourier transforms, the displacement components, u1ðx; yÞ, v1ðx; yÞ, u2ðx; yÞ and v2ðx; yÞ may be

expressed as
u1ðx; yÞ ¼
1

2p

Z 1

�1
F1ða; yÞeiax da; v1ðx; yÞ ¼

1

2p

Z 1

�1
G1ða; yÞeiax da; ð8a; bÞ

u2ðx; yÞ ¼
1

2p

Z 1

�1
F2ða; yÞeiax da; v2ðx; yÞ ¼

1

2p

Z 1

�1
G2ða; yÞeiax da; ð9a; bÞ

F1ða; yÞ ¼
X8

j¼5

A5jðaÞenjy ; G1ða; yÞ ¼
X8

j¼5

A6jðaÞenjy ; ð10a; bÞ
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F2ða; yÞ ¼ ½A75ðaÞ þ A76ðaÞy�ejajy þ ½A77ðaÞ þ A78ðaÞy�e�jajy ; ð11aÞ

G2ða; yÞ ¼ ½A85ðaÞ þ A86ðaÞy�ejajy þ ½A87ðaÞ þ A88ðaÞy�e�jajy ; ð11bÞ
where nj (j ¼ 5; . . . ; 8) satisfies the following characteristic equation
ðn2j � a2 þ cnjÞ2 þ d2jaj2jcj2 ¼ 0; ð12Þ

n5 ¼
1

2

�
� c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4ða2 þ ijajjcjdÞ

p �
; ð13aÞ

n6 ¼
1

2

�
� c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4ða2 þ ijajjcjdÞ

p �
; ð13bÞ

n7 ¼
1

2

�
� c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4ða2 � ijajjcjdÞ

p �
; ð13cÞ

n8 ¼
1

2

�
� c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4ða2 � ijajjcjdÞ

p �
; ð13dÞ

d2 ¼ 3� j
j þ 1

: ð13eÞ
The functions A5jðaÞ, A6jðaÞ, A7jðaÞ and A8jðaÞ (j ¼ 5; . . . ; 8) are unknown and are not independent. The

relationship between them can be written as
A75ðaÞ ¼ i
jaj
a
A85ðaÞ

�
þ j

a
A86ðaÞ

�
; A76ðaÞ ¼ i

jaj
a
A86ðaÞ; ð14a; bÞ

A77ðaÞ ¼ i

�
� jaj

a
A87ðaÞ þ

j
a
A88ðaÞ

�
; A78ðaÞ ¼ �i

jaj
a
A88ðaÞ; ð15a; bÞ

A5jðaÞ ¼ ajðaÞA6jðaÞ; j ¼ 5; 6; A5jðaÞ ¼ ��aj�2ðaÞA6jðaÞ; j ¼ 7; 8; ð16a; bÞ

ajðaÞ ¼ �
ðj þ 1Þ n2j þ cnj

� �
� ðj � 1Þa2

ia½2nj þ cð3� jÞ� ; j ¼ 5; . . . ; 8: ð17Þ
In the formulation given above, there are a total of eight unknowns, A6j and A8j (j ¼ 5; . . . ; 8). The

boundedness of r2yy and r2xy as jx2 þ y2j ! 1 requires that A87 and A88 be zero. The remaining six un-

knowns are obtained from the following continuity and boundary conditions on the surface of the coating
u1ðx;�hÞ ¼ u2ðx;�hÞ; v1ðx;�hÞ ¼ v2ðx;�hÞ; ð18a; bÞ

r1yyðx;�hÞ ¼ r2yyðx;�hÞ; r1xyðx;�hÞ ¼ r2xyðx;�hÞ; ð19a; bÞ

r1yyðx; 0Þ ¼ rðxÞ; r1xyðx; 0Þ ¼ sðxÞ: ð20a; bÞ

Of the six unknowns four may be eliminated by using four homogeneous conditions (18) and (19). The

remaining two unknowns (A65, A67) may then be expressed by using (20) as follows:
A65 ¼ � 1

l1D5

½ðj � 1ÞP ðaÞ�r8 þ �r6QðaÞ�; ð21aÞ
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A67 ¼ � 1

l1D5

½r6QðaÞ � ðj � 1ÞPðaÞr8�; ð21bÞ
where D5, r6 and r8 are known functions and P and Q are given by (see Guler (2001) for details)
P ðaÞ ¼
Z 1

�1
rðtÞe�iat dt; QðaÞ ¼

Z 1

�1
sðtÞe�iat dt: ð22a; bÞ
3. Integral equation for the stamp problem

The formulation given in the previous section describes the solution of the ordinary stress boundary

value problem shown in Fig. 2. On the other hand the contact problems shown in Figs. 1 and 3 for a rigid

stamp are mixed boundary value problems in which the tractions r and s are known to be zero outside the

contact region and within the contact region �a < x < b the displacement components are known through

the given stamp profile. By using the derivation described in Section 2 the displacements on the surface may
be expressed as
lim
y!0

2pl1

o

ox
v1ðx; yÞ ¼ lim

y!0

Z b

�a
K11ðx; y; tÞrðtÞdt þ lim

y!0

Z b

�a
K12ðx; y; tÞsðtÞdt; ð23aÞ
lim
y!0

2pl1

o

ox
u1ðx; yÞ ¼ lim

y!0

Z b

�a
K21ðx; y; tÞsðtÞdt þ lim

y!0

Z b

�a
K22ðx; y; tÞrðtÞdt; ð23bÞ
where the kernels Kij are known functions (see Guler (2001) for details) and to dictate the nature of sin-

gularity of the resulting integral equations (in this case Cauchy singularities and delta functions) (23) is

expressed in terms of displacement derivatives rather than displacements. We now observe that the kernels

Kij are of the form
Kijðx; y; tÞ ¼
Z 1

�1
hijðy; aÞe�iaðt�xÞ da; ði ¼ 1; 2; j ¼ 1; 2Þ: ð24Þ
Thus examining the asymptotic behavior of hij for jaj ! 1, the leading terms in (24) may be obtained as

(see Guler (2001) for details)
Fig. 3. Geometry of the flat stamp problem.
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K111ðx; y; tÞ ¼ K211ðx; y; tÞ ¼
j þ 1

4

Z 1

�1

ijaj
a

ejajye�iaðt�xÞ da ¼ j þ 1

4

2ðt � xÞ
ðt � xÞ2 � y2

; y < 0; ð25Þ
K121ðx; y; tÞ ¼ �K221ðx; y; tÞ ¼ � j � 1

4

Z 1

�1
ejajye�iaðt�xÞ da ¼ � j � 1

4

2y

ðt � xÞ2 þ y2
; y < 0: ð26Þ
By using the limits
lim
y!0�

t � x

ðt � xÞ2 þ y2
¼ 1

t � x
; lim

y!0�

y

ðt � xÞ2 þ y2
¼ �pdðt � xÞ ð27a; bÞ
from (23) it follows that
�xsðxÞ þ 1

p

Z b

�a

1

t � x

�
� k11ðt; xÞ

�
rðtÞdt � 1

p

Z b

�a
sðtÞk12ðt; xÞdt ¼ f ðxÞ; �a < x < b; ð28aÞ
xrðxÞ þ 1

p

Z b

�a

1

t � x

�
� k21ðt; xÞ

�
sðtÞdt � 1

p

Z b

�a
rðtÞk22ðt; xÞdt ¼ gðxÞ; �a < x < b; ð28bÞ
where the kernels kij are known bounded functions and
f ðxÞ ¼ k
o

ox
v1ðx; 0Þ; gðxÞ ¼ k

o

ox
u1ðx; 0Þ; k ¼ 4l1

j þ 1
; x ¼ j � 1

j þ 1
: ð29a–dÞ
The expressions (28) constitute a pair of integral equations for the unknown contact stresses r and s,
provided the stamp profile, that is, u1ðx; 0Þ and v1ðx; 0Þ, �a < x < b and the contact conditions (for

example, perfect adhesion) are prescribed. In this study it is assumed that the stamp moves relative to the

substrate, the coefficient of friction g in the contact region is constant and the friction is one of Coulomb

type. Thus in the contact region we have
r1yyðx; 0Þ ¼ rðxÞ ¼ �pðxÞ; �a < x < b; ð30aÞ
r1xyðx; 0Þ ¼ sðxÞ ¼ �gpðxÞ; �a < x < b; ð30bÞ
pðxÞ, �a < x < b; is the only unknown function and may be obtained from
xgpðxÞ þ 1

p

Z b

�a

�
� 1

t � x
þ k11ðt; xÞ þ gk12ðt; xÞ

�
pðtÞdt ¼ f ðxÞ; �a < x < b: ð31Þ
For a complete solution of the problem some additional conditions are needed. First, the contact
pressure pðxÞ must satisfy
Z b

�a
pðtÞdt ¼ P ; ð32Þ
where P is the resultant compressive force. The amplitude of the applied load may be given in terms of

either P or stamp displacement v0 parallel to the y-axis. Secondly, at the end points �a and/or b if the

contact is smooth (e.g. Fig. 1), then the solution pðxÞ must also satisfy certain consistency conditions

(Guler, 2001).

Detailed examination of the kernels in (31) shows that, in addition to the singular terms 1=ðt � xÞ and
dðt � xÞ, the kernels k11 and k12 have the following ill-behaved components which, for accuracy, needs to be

treated separately in the numerical analysis.
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k111ðx; tÞ ¼ � j þ 5

j þ 1
c
p
4

jt � xj
t � x

; ð33aÞ

k121ðx; tÞ ¼ � c
2
log

2ðt � xÞ
bþ a

				
				: ð33bÞ
By defining the following normalized quantities
x ¼ bþ a
2

r þ b� a
2

; t ¼ bþ a
2

sþ b� a
2

; �a < ðx; tÞ < b; �1 < ðr; sÞ < 1; ð34Þ

pðxÞ ¼ k/ðrÞ; f ðxÞ ¼ kF ðrÞ; xg ¼ A; ð35Þ
the integral equation (31) may be expressed in the following form
A/ðrÞ � 1

p

Z 1

�1

/ðsÞ
s� r

dsþ 1

p

Z 1

�1

kðr; sÞ/ðsÞds ¼ F ðrÞ; �1 < r < 1; ð36Þ
where the kernel kðr; sÞ is given by
kðr; sÞ ¼ ½k11ðx; tÞ þ gk12ðx; tÞ�
bþ a
2

: ð37Þ
4. On the solution of integral equations

For an accurate and efficient solution of the integral equation the corresponding weight function wðsÞ
needs to be determined. By defining the complex potential
UðzÞ ¼ 1

2pi

Z 1

�1

/ðsÞ
s� z

ds ð38Þ
and using the complex function theory (Muskhelishvili, 1953), from the dominant part of the integral
equation
xg/ðrÞ � 1

p

Z 1

�1

/ðsÞ
s� r

ds ¼ GðrÞ; ð39Þ
the weight function of /ðsÞ may be determined as
wðsÞ ¼ ð1� sÞað1þ sÞb; �1 < s < 1; ð40Þ

a ¼ h
p
þ N0; b ¼ � h

p
þM0; h ¼ arctan

1

xg
; ð41Þ
where N0 and M0 are arbitrary (positive, zero or negative) integers and are determined from the physics of

the problem. In (39) GðrÞ represents all the bounded terms in (36).

After determining wðsÞ the solution of (36) may be expressed as
/ðsÞ ¼
X1
n¼0

cnwðsÞP ða;bÞ
n ðsÞ; �1 < s < 1; ð42Þ
where cn are unknown coefficients and P ða;bÞ
n ðsÞ are Jacobi polynomials associated with the weight function

wðsÞ. By substituting (42) into (36) it may be shown that
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X1
n¼0

cn
2�j0

sin pa
P ð�a;�bÞ
n�j0

ðrÞ
�

þ KnðrÞ
�
¼ F ðrÞ; �1 < r < 1; ð43Þ

KnðrÞ ¼
1

p

Z 1

�1

kðr; sÞP ða;bÞ
n ðsÞwðsÞds; j0 ¼ �ða þ bÞ; ð44Þ
where j0 is the index of the integral equation (Muskhelishvili, 1953).

The functional equation (43) can be reduced to a system of algebraic equations in cn through a suitable

collocation technique (Erdogan and Gupta, 1972). In the numerical solution of (43), higher accuracy is

obtained when the density of the collocation points is increased near the ends by choosing the colloca-

tion points (ri, i ¼ 0; 1; . . . ;N ) as the roots of the Jacobi polynomials depending on the index of the

problem.
5. The in-plane stress r1xx on the surface

Once the contact stresses r1yyðx; 0Þ ¼ rðxÞ and r1xyðx; 0Þ ¼ sðxÞ are obtained, the in-plane stress r1xxðx; 0Þ
on the surface of the FGM coating may be evaluated. By using the Hooke’s law
r1xxðx; yÞ ¼
l1e

cy

j � 1
ðj

�
þ 1Þ ou1

ox
þ ð3� jÞ ov1

oy

�
; ð45Þ

r1yyðx; yÞ ¼
l1e

cy

j � 1
ð3

�
� jÞ ou1

ox
þ ðj þ 1Þ ov1

oy

�
; ð46Þ

r1xyðx; yÞ ¼ l1e
cy ou1

oy

�
þ ov1

ox

�
ð47Þ
and referring to (28) and (29), it may be shown that
r1xxðx; 0Þ ¼ rp1xxðx; 0Þ þ rq1xxðx; 0Þ; ð48Þ

rp1xxðx; 0Þ ¼ rðxÞ � 2

p

Z b

�a
k22ðt; xÞrðtÞdt; ð49aÞ

rq1xxðx; 0Þ ¼
2

p

Z b

�a

1

t � x

�
� k21ðt; xÞ

�
sðtÞdt: ð49bÞ
6. Examples

6.1. Flat stamp

Consider the contact problem for an FGM layer bonded to a homogeneous substrate shown in Fig. 3

where the stamp profile is given by
v1ðx; 0Þ ¼ �v0 ¼ constant;
o

ox
v1ðx; 0Þ ¼ 0: ð50Þ
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Referring to Fig. 3, (29) and (35), the integral equation (36) and the equilibrium equation (32) become
A/ðrÞ þ 1

p

Z 1

�1

�
� 1

s� r
þ kðr; sÞ

�
/ðsÞds ¼ 0; ð51Þ

Z 1

�1

/ðsÞds ¼ P
ka

: ð52Þ
The function pðxÞ has integrable singularities at x ¼ a and x ¼ �a. Thus, from the physics of the problem

we must require that both a and b be negative. They may then be obtained by letting N0 ¼ �1 and M0 ¼ 0
as follows:
g > 0 : a ¼ �1þ h
p
; b ¼ � h

p
;

g ¼ 0 : a ¼ �0:5; b ¼ �0:5;

g < 0 : a ¼ � h
p
; b ¼ �1þ h

p
;

ð53Þ
where
h ¼ arctan
j þ 1

gðj � 1Þ

				
				; 0 < h <

p
2
: ð54Þ
Assuming a solution of the form (42), using the properties of Jacobi Polynomials and truncating the

series at N , Eq. (43) becomes
XN
n¼0

cn
1

2 sin pa
P ð�a;�bÞ
n�1 ðrÞ

�
þ KnðrÞ

�
¼ 0; �1 < r < 1: ð55Þ
By using the collocation technique (55) gives N equations for N þ 1 unknown constants c0; . . . ; cN .
The additional equation for a unique solution is provided by the equilibrium condition (52) which

becomes
XN
n¼0

c�n

Z 1

�1

wðsÞP ða;bÞ
n ðsÞds ¼ 1; ð56Þ
where
c�n ¼
ka
P
cn: ð57Þ
Using the following orthogonality condition
Z 1

�1

P ða;bÞ
n ðtÞP ða;bÞ

j ðtÞwðtÞdt ¼ 0; n 6¼ j;
hða;bÞ
j ; n ¼ j;



j ¼ 0; 1; 2; . . . ; ð58Þ
where
hða;bÞ
0 ¼

Z 1

�1

wðtÞdt ¼ 2aþbþ1Cða þ 1ÞCðb þ 1Þ
Cða þ b þ 2Þ ; ð59Þ

hða;bÞ
j ¼ 2aþbþ1Cðjþ a þ 1ÞCðjþ b þ 1Þ

ð2jþ a þ b þ 1Þj!Cðjþ a þ b þ 1Þ ; ð60Þ
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we obtain the following N þ 1 equations
c�
0
h0 ¼ 1;

XN
n¼1

c�nFnðriÞ ¼ 0; i ¼ 1; . . . ;N ; ð61a; bÞ
where
FnðriÞ ¼
1

2 sin pa
P ð�a;�bÞ
n�1 ðriÞ þ KnðriÞ: ð62Þ
In (62) ri (i ¼ 1; . . . ;N ) are obtained by letting
P ðaþ1;bþ1Þ
N ðriÞ ¼ 0; i ¼ 1; . . . ;N : ð63Þ
After determining cn, the contact stresses and the in-plane stress may be obtained as
r1yyðx; 0Þ
r0

¼ � pðxÞ
r0

; ð64aÞ

r1xyðx; 0Þ
r0

¼ �g
pðxÞ
r0

; ð64bÞ

r1xxðx; 0Þ
r0

¼ � pðxÞ
r0

� 2g
pr0

Z a

�a

pðtÞ
t � x

dt þ 2

pr0

Z a

�a
½k22ðt; xÞ þ gk21ðt; xÞ�pðtÞdt; ð64cÞ

r0 ¼
P
2a

; ð64dÞ
where
pðxÞ ¼ 2r0 1
�

� x
a

�a
1

�
þ x
a

�b XN
n¼0

c�nP
ða;bÞ
n

x
a

� �
: ð65Þ
Upon solving the problem, the stress intensity factors at the end points x ¼ 
a of the flat stamp may be

defined as and evaluated from
k1ðaÞ ¼ lim
x!a

pðxÞ
2bða� xÞa ¼

2r0

aa

XN
n¼0

c�nP
ða;bÞ
n ð1Þ; ð66aÞ

k1ð�aÞ ¼ lim
x!a

pðxÞ
2aðxþ aÞb

¼ 2r0

ab

XN
n¼0

c�nP
ða;bÞ
n ð�1Þ: ð66bÞ
6.2. Triangular stamp

Consider now the stamp problem for the FGM layer bonded to a homogeneous substrate shown in

Fig. 4 where the stamp profile is given by
v1ðx; 0Þ ¼ mxþ C;
o

ox
v1ðx; 0Þ ¼ m; ð67Þ
where m is a positive constant.

Defining
x ¼ b
2
ðr þ 1Þ; t ¼ b

2
ðsþ 1Þ; pðtÞ ¼ k/ðsÞ; ð68Þ



Fig. 4. Geometry of the triangular stamp problem.
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the integral equation (36) and the equilibrium condition (32) become
A/ðrÞ þ 1

p

Z 1

�1

�
� 1

s� r
þ kðr; sÞ

�
/ðsÞds ¼ m; ð69Þ

Z 1

�1

/ðsÞds ¼ 2P
kb

: ð70Þ
Since the triangular stamp has a sharp corner at x ¼ 0, and smooth contact at x ¼ b, from the physics of

the problem it follows that a be positive and b be negative. They can then be found by letting N0 ¼ M0 ¼ 0

in (41) as
g > 0 : a ¼ h
p
; b ¼ � h

p
;

g ¼ 0 : a ¼ 0:5; b ¼ �0:5;

g < 0 : a ¼ 1� h
p
; b ¼ �1þ h

p
;

ð71Þ
where h is given by Eq. (41).

Assuming a solution of the form (42) and using the properties of Jacobi Polynomials and truncating the
series at N , Eq. (43) becomes
XN
n¼0

c�n
1

sin pa
P ð�a;�bÞ
n ðrÞ

�
þ KnðrÞ

�
¼ 1; �1 < r < 1; ð72aÞ

c�n ¼
cn
m
: ð72bÞ
In this problem, after the application of the load P , one end of the contact length, namely b is unknown.
However, for a given value of the contact length, Eq. (72) provides N þ 1 equations for N þ 1 unknown

constants ðc0; . . . ; cNÞ as follows:
XN
n¼0

c�n
1

sin pa
P ð�a;�bÞ
n ðriÞ

�
þ KnðriÞ

�
¼ 1; i ¼ 1; . . . ;N þ 1; �1 < r < 1; ð73Þ
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where ri ði ¼ 1; . . . ;N þ 1Þ are defined by
Table

Stress

C3

8

2

1

1/2

1/8
P ða�1;bþ1Þ
Nþ1 ðriÞ ¼ 0; ri ði ¼ 1; . . . ;N þ 1Þ: ð74Þ
The relationship between the applied load P and the contact length, b can be found from the equilibrium

equation (70) which becomes:
c�0h0 ¼
2P
kbm

; ð75Þ
where h0 can be computed from Eq. (59)
h0 ¼
2pa
sin pa

; ð76Þ

P
l1m

¼ 2c�0h0

j þ 1
b: ð77Þ
The contact stresses and the in-plane stress in nondimensional form at the surface of the FGM coating can

then be expressed as
r1yyðx; 0Þ
l1m

¼ � pðxÞ
l1m

; ð78aÞ

r1xyðx; 0Þ
l1m

¼ �g
pðxÞ
l1m

; ð78bÞ

r1xxðx; 0Þ
l1m

¼ � pðxÞ
l1m

� 2g
pl1m

Z b

0

pðtÞ
t � x

dt þ 2

pl1m

Z b

0

½k22ðt; xÞ þ gk21ðt; xÞ�pðtÞdt; ð78cÞ
where
pðxÞ ¼ 4l1m
j þ 1

b� x
x

� �a XN
n¼0

c�nP
ða;bÞ
n

2x
b

�
� 1

�
: ð79Þ
After determining c�n the stress intensity factor at x ¼ 0 may be defined as and obtained from
k1ð0Þ ¼ lim
x!0

xapðxÞ ¼ 4l1mb
a

j þ 1

XN
n¼0

c�nP
ða;bÞ
n ð�1Þ: ð80Þ
1

intensity factors for flat stamp a=h ¼ 0:1, C3 ¼ l2=l1 (Fig. 3)

g ¼ 0:0 g ¼ 0:1 g ¼ 0:3 g ¼ 0:5

a ¼ �0:5,

b ¼ �0:5

a ¼ �0:5091, b ¼ �0:4909 a ¼ �0:5272, b ¼ �0:4728 a ¼ �0:5452, b ¼ �0:4548

k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

0.2802 0.2769 0.2833 0.2696 0.2885 0.2615 0.2926

0.3038 0.3025 0.3048 0.2991 0.3060 0.2949 0.3062

0.3183 0.3182 0.3182 0.3171 0.3171 0.3151 0.3151

0.3355 0.3366 0.3341 0.3382 0.3305 0.3386 0.3261

0.3813 0.3855 0.3768 0.3933 0.3673 0.3999 0.3572
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7. Results and discussion

Tables 1 and 2 show some examples for the stress intensity factors obtained for a flat stamp (Fig. 3) by

assuming that a=h ¼ 0:1; 0:5; g ¼ 0; 0:1; 0:3; 0:5 and m ¼ 0:3. In these examples the variable is assumed to be
the stiffness ratio C3 ¼ l2=l1 (Fig. 3). The tables also give the powers of stress singularity, b and a,
respectively at the leading x ¼ �að Þ and the trailing ðx ¼ aÞ ends of the stamp corresponding to m ¼ 0:3 and
Table 2

Stress intensity factors for flat stamp a=h ¼ 0:5, C3 ¼ l2=l1 (Fig. 3)

g ¼ 0:0 g ¼ 0:1 g ¼ 0:3 g ¼ 0:5

a ¼ �0:5,

b ¼ �0:5

a ¼ �0:5091, b ¼ �0:4909 a ¼ �0:5272, b ¼ �0:4728 a ¼ �0:5452, b ¼ �0:4548

C3 k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

k1ð�aÞ
Paa

k1ðaÞ
Pab

8 0.2086 0.1973 0.2199 0.1754 0.2422 0.1549 0.2635

2 0.2700 0.2657 0.2740 0.2565 0.2814 0.2467 0.2876

1 0.3183 0.3182 0.3182 0.3171 0.3171 0.3151 0.3151

1/2 0.3848 0.3895 0.3800 0.3979 0.3696 0.4053 0.3587

1/8 0.6011 0.6178 0.5844 0.6510 0.5511 0.6834 0.5185

Table 3

Stress intensity factors for the triangular stamp b=h ¼ 0:2, C3 ¼ l2=l1 (Fig. 4)

g ¼ 0:0 g ¼ 0:1 g ¼ 0:3 g ¼ 0:5

a ¼ þ0:5, b ¼ �0:5 a ¼ þ0:4909,

b ¼ �0:4909

a ¼ þ0:4728,

b ¼ �0:4728

a ¼ þ0:4548,

b ¼ �0:4548

C3 k1ð0Þ
l1mba

k1ð0Þ
l1mba

k1ð0Þ
l1mba

k1ð0Þ
l1mba

8 1.6247 1.6430 1.6751 1.7005

2 1.4976 1.5041 1.5128 1.5160

1 1.4286 1.4280 1.4234 1.4142

1/2 1.3550 1.3467 1.3279 1.3063

1/8 1.1912 1.1677 1.1224 1.0789

Table 4

Stress intensity factors for the triangular stamp b=h ¼ 0:5, C3 ¼ l2=l1 (Fig. 4)

g ¼ 0:0 g ¼ 0:1 g ¼ 0:3 g ¼ 0:5

a ¼ þ0:5, b ¼ �0:5 a ¼ þ0:4909,

b ¼ �0:4909

a ¼ þ0:4728,

b ¼ �0:4728

a ¼ þ0:4548,

b ¼ �0:4548

C3 k1ð0Þ
l1mba

k1ð0Þ
l1mba

k1ð0Þ
l1mba

k1ð0Þ
l1mba

8 2.1922 2.2358 2.3188 2.3951

2 1.6876 1.6976 1.7132 1.7228

1 1.4286 1.4280 1.4234 1.4142

1/2 1.1794 1.1736 1.1593 1.1418

1/8 0.7522 0.7470 0.7347 0.7203



Fig. 5. Stress distribution on the surface of the FGM coating loaded by a flat stamp for various values of the stiffness ratio, C3 ¼ l2=l1,

a=h ¼ 0:5, g ¼ 0:0.

Fig. 6. Stress distribution on the surface of the FGM coating for various values of the stiffness ratio, C3 ¼ l2=l1, a=h ¼ 0:1, g ¼ 0:3.

Fig. 7. Stress distribution on the surface of the FGM coating for various values of the stiffness ratio, C3 ¼ l2=l1, a=h ¼ 0:5, g ¼ 0:3.
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Fig. 8. Stress distribution on the surface of the FGM coating for various values of the stiffness ratio, C3 ¼ l2=l1, a=h ¼ 0:1, g ¼ 0:5.

Fig. 9. Stress distribution on the surface of the FGM coating for various values of the coefficient of friction g, C3 ¼ l2=l1 ¼ 8,

a=h ¼ 0:1, g ¼ 0:5.
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various values of g. It should be strongly emphasized that in contact problems a and b are independent of
the material inhomogeneity parameter (in this case, c) and depend only on the coefficient of friction g and

the value of the Poisson’s ratio m on the surface y ¼ 0. The table also shows that the singularity at the

trailing end of the stamp is stronger than that at the leading end, i.e., jaj > jbj. From the tables it may be

observed that for stiffer substrates, that is for l2 > l1 the stress intensity factors are smaller than that for

l2 < l1. Tables 3 and 4 show the stress intensity factors and the singularities a and b for a triangular stamp.

These tables, too, show greater ‘‘stress concentration’’ at the trailing end relative to the corresponding

frictionless stamp.

By examining stress singularities a and b (for example, for the flat stamp) given by (53a) and (54), it may
be seen that for a fixed value of j, as g approaches zero, h ! p=2, a ! �1=2, and b ! �1=2, giving the

known square-root singularity for the frictionless sliding stamp. Similarly, as g becomes very large, h ! 0,

a ! �1, and b ! 0. As a consequence the singularity at the trailing end (x ¼ a) of the flat stamp becomes

stronger and that at the leading end (x ¼ �a) becomes weaker than the corresponding singularities for the

frictionless stamp.



Fig. 10. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:2, g ¼ 0, P � ¼ P=ðl1mhÞ.
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Stress distributions perhaps of greatest practical interest are the contact stress ryyðx; 0Þ (with

rxyðx; 0Þ ¼ gryyðx; 0Þ) and the in-plane stress rxxðx; 0Þ. Any other stress or displacement component may be

determined by using the appropriate Green’s functions obtained from Fig. 1 and the density functions pðxÞ
and gpðxÞ. Figs. 5–9 show some flat stamp results for the stress components on the surface of the FGM

coating for various values of the stiffness ratio C3 ¼ l2=l1 and fixed values of a=h and g. For reference Fig.
5 shows an example for the frictionless flat stamp. Note that the stress distribution is symmetric with respect
to the x ¼ 0 plane, for xj j < a, rxxðx; 0Þ is compressive, for xj j > a, rxx ¼ 0 for C3 ¼ 1 (homogeneous half

plane), rxx > 0 for C3 > 1 and rxx < 0 for C3 < 1. For xj j < a all stress components become unbounded as

xj j ! a.
Figs. 6–9 show the influence of the stiffness ratio, C3 the length parameter a=h and the coefficient of

friction g on the distribution of ryyðx; 0Þ and rxxðx; 0Þ. The most important result is that in the presence of

friction rxxðx; 0Þ become positive and unbounded as x! aþ 0. Figs. 10–17 show some sample results for a

triangular stamp. Specifically, the figures show the effect of the stiffness ratio C3 on ryyðx; 0Þ, rxxðx; 0Þ and
the resultant force P vs the contact length b relationship for certain combination of b=h and g. Again, for
reference the frictionless case is shown in Fig. 10. As expected, because of the singularity, ryyðx; 0Þ and

rxxðx; 0Þ become unbounded as x! 0. In this problem the length b describing the location of the smooth

contact is unknown and is a monotonically increasing, highly nonlinear function of P . The problem is

solved by assuming b, then computing P from the static equilibrium of the stamp. P vs. b given in the figures



Fig. 11. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:5, g ¼ 0, P � ¼ P=ðl1mhÞ.
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is obtained by repeating this process. The slope m of the stamp has no influence on the singularities. Hence,
its influence on the calculated stresses is largely quantitative. One of the more interesting results that may

be observed in the triangular stamp problem is the tensile spike in the distribution of rxxðx; 0Þ as x! b
which, clearly, has some implications regarding the initiation and subcritical growth of surface cracks

under repeated loading. Another interesting result that may be observed from Figs. 16 and 17 is that fixing

C3 and b=h and varying g seem to have almost no influence on ryyðx; 0Þ but rather significant effect on

rxxðx; 0Þ.
As pointed out previously, in the sliding contact problem under consideration the weight functions wðxÞ

and, consequently, the singularities of contact stresses are dependent on the coefficient of friction g and the
surface value of the Poisson’s ratio m (or the material parameter j) only, and are independent of all material

constants (such as c, l1 and l2 (see Eqs. (1) and (2)) and length parameters (such as h, a, b and m) (see Figs.
3 and 4). Also, observing that on physical grounds the surface value of the shear modulus l1 must be

nonzero, the leading term in the asymptotic solution of the general sliding contact problem described in Fig.

1 may be obtained by assuming that the coating thickness h tends to infinity and, as a result c tends to zero,

g is a known constant and the medium is homogeneous with elastic properties l1 and j. The closed form

solutions for the two stamp geometries considered in this study, namely the flat and triangular stamps are

given in Appendix A. The results shown in the Appendix A include the contact stresses ryyðx; 0Þ,
rxyðx; 0Þ ¼ gryyðx; 0Þ, the in-plane stress rxxðx; 0Þ; and the stress intensity factors k1ð
aÞ, or k1ð0Þ. The
singular behavior of the asymptotic solution given in the Appendix A is thus identical to that of the actual



Fig. 12. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:2, g ¼ 0:1, P � ¼ P=ðl1mhÞ.
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problems described in Figs. 3 and 4. The difference is in the multiplying factors such as the stress intensity

factors (see Eqs. (66a), (66b), (80), (A.6), (A.7) and (A.13) and Tables 1–4).
8. Some concluding remarks

In sliding contact problems for graded materials the weight functions describing the asymptotic behavior
of the contact stresses are dependent, as in the homogeneous materials, on the coefficient of friction and the

surface value of the Poisson’s ratio only, and are independent of all other material constants and length

parameters. Thus, the leading term in the asymptotic solution of the general sliding contact problem for

graded coatings may be obtained from the corresponding homogeneous half plane solution which, for

many simplified stamp geometries, may be evaluated in closed form. Generally at the trailing end of the

contact area the ‘‘stress concentration’’ is higher than that at the leading end. For example, for a flat stamp

jaj > jbj, a < 0, b < 0, a and b being the power of stress singularity at the trailing and the leading end of the

stamp, respectively.
The results indicate that in sliding contact problems for graded coatings the influence of not only the

coefficient of friction(which is expected) but also the material inhomogeneity constant c or the stiffness ratio
C3 on the contact stresses, particularly the stress intensity factors can be quite significant.



Fig. 13. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:2, g ¼ 0:5, P � ¼ P=ðl1mhÞ.
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Appendix A

Closed form solution for a rigid flat stamp on a homogeneous half space may be obtained as (Guler,

2001)
ryyðx; 0Þ
r0

¼ 2 sin pa
p

1
�

� x
a

�a
1

�
þ x
a

�b
; ðA:1Þ

rxxðx; 0Þ
r0

¼ 2 sin pa
p

1� x
a


 �a
1þ x

a


 �b þ 2g
p Lf ðxÞ; �a < x < a;

2g
Lf ðxÞ; jxj > a;

8><
>: ðA:2Þ
p



Fig. 14. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:5, g ¼ 0:1, P � ¼ P=ðl1mhÞ.
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where
Lf ðxÞ ¼
p

sin pa

1� x
a


 �a
1þ x

a


 �b
; �1 < x < �a;

1� x
a


 �a
1þ x

a


 �b
cos pa; �a < x < a;

x
a� 1


 �a
1þ x

a


 �b
; a < x < 1;

8><
>: ðA:3Þ

r0 ¼
P
2a

; ðA:4Þ

a ¼ �1þ h
p
; b ¼ � h

p
; h ¼ arctan

j þ 1

gðj � 1Þ

				
				: ðA:5Þ
The stress intensity factors at the ends of the flat stamp can be found from
k1ðaÞ ¼ � 2r0

paa
sin pa; ðA:6Þ

k1ð�aÞ ¼ � 2r0

pab
sin pa: ðA:7Þ



Fig. 15. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the stiffness ratio,

C3 ¼ l2=l1, b=h ¼ 0:5, g ¼ 0:5, P � ¼ P=ðl1mhÞ.
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Closed form solution of the triangular stamp can be obtained as (Guler, 2001)
ryyðx; 0Þ
l1m

¼ � 4

j þ 1
sin pa

b� x
x

� �a

; ðA:8Þ

rxxðx; 0Þ
l1m

¼ � 4 sin pa
j þ 1

b� x
x

� �a

þ 2g
p
LtðxÞ; 0 < x < b;

2g
p
LtðxÞ; x < 0; x > b;

8>><
>>:

ðA:9Þ
where
LtðxÞ ¼
p

sin pa

� x� b
x

� �a

� 1; x < 0;

b� x
x

� �a

cos pa � 1; 0 < x < b;

x� b
x

� �a

; x > b:

8>>>>>>>><
>>>>>>>>:

ðA:10Þ



Fig. 16. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the coefficient

of friction g, C3 ¼ l2=l1 ¼ 8, b=h ¼ 0:2, P � ¼ P=ðl1mhÞ.
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a ¼ h
p
; b ¼ � h

p
; h ¼ arctan

j þ 1

gðj � 1Þ

				
				: ðA:11Þ
The load versus contact length relation may be expressed as
P
l1m

¼ 4pa
j þ 1

b: ðA:12Þ
The stress intensity factor at the sharp end of the triangular stamp is found to be
k1ð0Þ ¼
4l1mb

a

j þ 1
sin pa: ðA:13Þ



Fig. 17. Stress distribution on the surface of an FGM coating loaded by a rigid triangular stamp for various values of the coefficient

of friction g, C3 ¼ l2=l1 ¼ 1=8, b=h ¼ 0:2, P � ¼ P=ðl1mhÞ.
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